Search results for " 35K65"

showing 6 items of 6 documents

A continuous time tug-of-war game for parabolic $p(x,t)$-Laplace type equations

2019

We formulate a stochastic differential game in continuous time that represents the unique viscosity solution to a terminal value problem for a parabolic partial differential equation involving the normalized $p(x,t)$-Laplace operator. Our game is formulated in a way that covers the full range $1<p(x,t)<\infty$. Furthermore, we prove the uniqueness of viscosity solutions to our equation in the whole space under suitable assumptions.

050208 financeLaplace transformApplied MathematicsGeneral MathematicsTug of warProbability (math.PR)010102 general mathematics05 social sciencesMathematical analysisType (model theory)01 natural sciencesParabolic partial differential equationTerminal valueMathematics - Analysis of PDEs0502 economics and businessDifferential gameFOS: Mathematics91A15 49L25 35K650101 mathematicsViscosity solutionMathematics - ProbabilityAnalysis of PDEs (math.AP)Mathematics
researchProduct

Local regularity for quasi-linear parabolic equations in non-divergence form

2018

Abstract We consider viscosity solutions to non-homogeneous degenerate and singular parabolic equations of the p -Laplacian type and in non-divergence form. We provide local Holder and Lipschitz estimates for the solutions. In the degenerate case, we prove the Holder regularity of the gradient. Our study is based on a combination of the method of alternatives and the improvement of flatness estimates.

Applied Mathematics010102 general mathematicsMathematical analysisDegenerate energy levelsMathematics::Analysis of PDEsType (model theory)Lipschitz continuity01 natural sciencesParabolic partial differential equation010101 applied mathematicsViscosityMathematics - Analysis of PDEs35B65 35K65 35D40 35K92 35K6FOS: Mathematics0101 mathematicsDivergence (statistics)Laplace operatorAnalysisAnalysis of PDEs (math.AP)Flatness (mathematics)MathematicsNonlinear Analysis
researchProduct

Uniqueness of diffusion on domains with rough boundaries

2016

Let $\Omega$ be a domain in $\mathbf R^d$ and $h(\varphi)=\sum^d_{k,l=1}(\partial_k\varphi, c_{kl}\partial_l\varphi)$ a quadratic form on $L_2(\Omega)$ with domain $C_c^\infty(\Omega)$ where the $c_{kl}$ are real symmetric $L_\infty(\Omega)$-functions with $C(x)=(c_{kl}(x))>0$ for almost all $x\in \Omega$. Further assume there are $a, \delta>0$ such that $a^{-1}d_\Gamma^{\delta}\,I\le C\le a\,d_\Gamma^{\delta}\,I$ for $d_\Gamma\le 1$ where $d_\Gamma$ is the Euclidean distance to the boundary $\Gamma$ of $\Omega$. We assume that $\Gamma$ is Ahlfors $s$-regular and if $s$, the Hausdorff dimension of $\Gamma$, is larger or equal to $d-1$ we also assume a mild uniformity property for $\Omega$ i…

Boundary (topology)01 natural sciencesAhlfors regularityCombinatoricsMarkov uniquenessMathematics - Analysis of PDEsHardy inequalityFOS: MathematicsUniqueness0101 mathematicsMathematicsDiscrete mathematicsDirichlet formApplied Mathematicsta111010102 general mathematicsNeighbourhood (graph theory)Lipschitz continuity47D07 35J70 35K65010101 applied mathematicsQuadratic formHausdorff dimensionDomain (ring theory)AnalysisAnalysis of PDEs (math.AP)
researchProduct

Perron's method for the porous medium equation

2016

O. Perron introduced his celebrated method for the Dirichlet problem for harmonic functions in 1923. The method produces two solution candidates for given boundary values, an upper solution and a lower solution. A central issue is then to determine when the two solutions are actually the same function. The classical result in this direction is Wiener’s resolutivity theorem: the upper and lower solutions coincide for all continuous boundary values. We discuss the resolutivity theorem and the related notions for the porous medium equation ut −∆u = 0

Dirichlet problemApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysiscomparison principlePerron methodFunction (mathematics)Primary 35K55 Secondary 35K65 35K20 31C45obstaclesPorous medium equation01 natural sciencesBoundary values010101 applied mathematicsMathematics - Analysis of PDEsHarmonic functionFOS: Mathematics0101 mathematicsPorous mediumPerron methodAnalysis of PDEs (math.AP)Mathematics
researchProduct

Boundary regularity for degenerate and singular parabolic equations

2013

We characterise regular boundary points of the parabolic $p$-Laplacian in terms of a family of barriers, both when $p>2$ and $1<p<2$. Due to the fact that $p\not=2$, it turns out that one can multiply the $p$-Laplace operator by a positive constant, without affecting the regularity of a boundary point. By constructing suitable families of barriers, we give some simple geometric conditions that ensure the regularity of boundary points.

Mathematics - Analysis of PDEsSimple (abstract algebra)Applied MathematicsDegenerate energy levelsMathematical analysis35K20 31B25 35B65 35K65 35K67 35K92FOS: MathematicsBoundary (topology)Mathematics::Spectral TheoryParabolic partial differential equationAnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

Boundary Regularity for the Porous Medium Equation

2018

We study the boundary regularity of solutions to the porous medium equation $u_t = \Delta u^m$ in the degenerate range $m>1$. In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general -- not necessarily cylindrical -- domains in ${\bf R}^{n+1}$. One of our fundamental tools is a new strict comparison principle between sub- and superpara…

Pure mathematicsComplex systemBoundary (topology)Mathematical AnalysisCharacterization (mathematics)01 natural sciencesMathematics - Analysis of PDEsMathematics (miscellaneous)Matematisk analysporous medium equationFOS: Mathematics0101 mathematicsSpatial domainMathematicsosittaisdifferentiaaliyhtälötDirichlet problemMechanical Engineering010102 general mathematicsDegenerate energy levels35K20 (Primary) 35B51 35B65 35K10 35K55 35K65 (Secondary)010101 applied mathematicsRange (mathematics)boundary regularityPorous mediumAnalysisAnalysis of PDEs (math.AP)Archive for Rational Mechanics and Analysis
researchProduct