Search results for " 35K65"
showing 6 items of 6 documents
A continuous time tug-of-war game for parabolic $p(x,t)$-Laplace type equations
2019
We formulate a stochastic differential game in continuous time that represents the unique viscosity solution to a terminal value problem for a parabolic partial differential equation involving the normalized $p(x,t)$-Laplace operator. Our game is formulated in a way that covers the full range $1<p(x,t)<\infty$. Furthermore, we prove the uniqueness of viscosity solutions to our equation in the whole space under suitable assumptions.
Local regularity for quasi-linear parabolic equations in non-divergence form
2018
Abstract We consider viscosity solutions to non-homogeneous degenerate and singular parabolic equations of the p -Laplacian type and in non-divergence form. We provide local Holder and Lipschitz estimates for the solutions. In the degenerate case, we prove the Holder regularity of the gradient. Our study is based on a combination of the method of alternatives and the improvement of flatness estimates.
Uniqueness of diffusion on domains with rough boundaries
2016
Let $\Omega$ be a domain in $\mathbf R^d$ and $h(\varphi)=\sum^d_{k,l=1}(\partial_k\varphi, c_{kl}\partial_l\varphi)$ a quadratic form on $L_2(\Omega)$ with domain $C_c^\infty(\Omega)$ where the $c_{kl}$ are real symmetric $L_\infty(\Omega)$-functions with $C(x)=(c_{kl}(x))>0$ for almost all $x\in \Omega$. Further assume there are $a, \delta>0$ such that $a^{-1}d_\Gamma^{\delta}\,I\le C\le a\,d_\Gamma^{\delta}\,I$ for $d_\Gamma\le 1$ where $d_\Gamma$ is the Euclidean distance to the boundary $\Gamma$ of $\Omega$. We assume that $\Gamma$ is Ahlfors $s$-regular and if $s$, the Hausdorff dimension of $\Gamma$, is larger or equal to $d-1$ we also assume a mild uniformity property for $\Omega$ i…
Perron's method for the porous medium equation
2016
O. Perron introduced his celebrated method for the Dirichlet problem for harmonic functions in 1923. The method produces two solution candidates for given boundary values, an upper solution and a lower solution. A central issue is then to determine when the two solutions are actually the same function. The classical result in this direction is Wiener’s resolutivity theorem: the upper and lower solutions coincide for all continuous boundary values. We discuss the resolutivity theorem and the related notions for the porous medium equation ut −∆u = 0
Boundary regularity for degenerate and singular parabolic equations
2013
We characterise regular boundary points of the parabolic $p$-Laplacian in terms of a family of barriers, both when $p>2$ and $1<p<2$. Due to the fact that $p\not=2$, it turns out that one can multiply the $p$-Laplace operator by a positive constant, without affecting the regularity of a boundary point. By constructing suitable families of barriers, we give some simple geometric conditions that ensure the regularity of boundary points.
Boundary Regularity for the Porous Medium Equation
2018
We study the boundary regularity of solutions to the porous medium equation $u_t = \Delta u^m$ in the degenerate range $m>1$. In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general -- not necessarily cylindrical -- domains in ${\bf R}^{n+1}$. One of our fundamental tools is a new strict comparison principle between sub- and superpara…